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What  we’ll talk about

• Quick background on immutable data and FP.

• Advantages and trade-offs. i.e., “why bother?”

• Four simple things to put it in practice in an object-oriented 
approach.
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Getting to know each other
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Anyone working without 
garbage collection?
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Who’s working on a functional 
programming language?
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What are you working on? 
Python? Ruby? Java? C#?
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Who is already using 
immutable data somewhere?
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About me
• Software engineer, run Numergent.

• Run project-specific, distributed development teams.

• Work mostly with data-oriented projects, on media, health care 
information management, and financial companies.

• Doing software development professionally for 20+, hacking around 
for longer.
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My path here
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Come for the functional way,
stay for the immutable data.
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Realized immutable data made 
code easier to refactor.
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If you have mutable data,
you have to take things on faith.
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Can a long-lived object trust we 
won’t change its parameters?
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Why immutable data?
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There is no frictionless 
movement.
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Stop thinking about operations, 
start thinking about results
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Immutability 
is not 
statelessness
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You have a state.
Your state is your world view.
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When your state changes,
you don’t discard knowledge.
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A functional approach
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Many inputs, one single output.
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Values are immutable.
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Functions do not trigger any 
state side-effects.
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Functional is about semantics,
languages just help
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“The most boring things in the 
universe”

“Clojure is Boring” 

Constantin Dumitrescu @  BucharestFP

https://8thlight.com/blog/colin-jones/2016/10/06/clojure-is-boring.html

https://8thlight.com/blog/colin-jones/2016/10/06/clojure-is-boring.html
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Show of hands again…
C# / Java users.
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Strings!
• Do you have a problem understanding how they work?

• Are you worried that they’ll be changed from under you?

• Are you concerned about using it as a key in a dictionary?

• Have you had to check the implementation?

• Do you think they are exciting?
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Strings are boring, reliable, 
immutable data items.
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void DoSomethingToObject()

In-place Add/Remove

ref and out
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Dealing with unknowns
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For an unknown method:

1. Poke it.
2. Read it.
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Being fully acquainted with the 
code is the only option with 
variable data.
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1. Have access to every source 
involved.

2. Have the time available.
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There’s unknowns everywhere.

The larger the team, the more 
unknowns.
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1. Not everyone will understand 
the subtleties of the language.
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2. Not everyone will understand 
the subtleties of your code base.
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But…

Single Responsibility Principle!
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Cross-cutting concerns make 
Single Responsibility non-trivial.
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Eventually, you’ll encapsulate 
your herd of methods.
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Encapsulation reduces mental 
clutter.

It also obscures.
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Readability is a matter of habit.
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Not only Readability,
but
Comprehensibility.
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Functional, the OOP way
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1. Structs can be a gateway drug.
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2. Don’t mutate your objects.
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Vector.Normalize()

Vector.Normalized
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employee.Salary += 100

Employee SalaryChange(float v)

employee.SalaryChange(100)
.SetPosition(newTitle)
.SetSomeProp(true)
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3. Write to Enumerables, not to 
Collections.
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3.a. Use the functional facilities 
for result generation (Where, 
Select, etc).
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4. Use immutable collections.

.Net:   https://msdn.microsoft.com/en-us/library/system.collections.immutable(v=vs.111).aspx

Java: https://github.com/google/guava/wiki/ImmutableCollectionsExplained

https://msdn.microsoft.com/en-us/library/system.collections.immutable(v=vs.111).aspx
https://github.com/google/guava/wiki/ImmutableCollectionsExplained
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http://clojure.org/

http://clojure.org/
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Where to do this?
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Business logic?
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Logic is about reasoning 
according to strict principles of 
validity.
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UI?
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UI should be about 
representing state.
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re-frame’s event conveyor belt

https://github.com/Day8/re-frame

https://github.com/Day8/re-frame
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“Oh well, that’s all fine for two 
divs and a listbox”
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Defold

https://www.youtube.com/watch?v=ajX09xQ_UEg

https://www.youtube.com/watch?v=ajX09xQ_UEg


@ArgesRic

For a simple UI, anything will do.

For a complex UI, 
immutability helps.
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Data layer?
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Where NOT to do this?
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Is RAM a concern?
Is the GC hit a concern?
Is raw performance a concern?
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Why do this?
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Trading off GC hit for a codebase 
that’s easier to reason about.
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You’ll never have to wonder 
about side-effects when 
refactoring again.
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You’ll write code that’s easier to 
delete.
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Easier threading.

Easier to offload processing.
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"Who’s holding these objects?"

Who cares?
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Immutable data lets you focus 
on comprehension,
not memorization.
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Conclusions
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Immutability frees you to change 
your mind.
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To be in control, you have to 
know.

Variability demands you take 
things on faith.
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Try some functional patterns.

Replace trust with certainty.
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Questions?

https://speakerdeck.com/ricardojmendez/flexibility-through-immutability

https://speakerdeck.com/ricardojmendez/flexibility-through-immutability
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Thank you!
Ricardo J. Méndez

ricardo@numergent.com

https://speakerdeck.com/ricardojmendez/flexibility-through-immutability

mailto:ricardo@numergent.com
https://speakerdeck.com/ricardojmendez/flexibility-through-immutability
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