
Flexibility Through
Immutability
Ricardo J. Méndez
ricardo@numergent.com

mailto:ricardo@numergent.com

@ArgesRic

What we’ll talk about

• Quick background on immutable data and FP.

• Advantages and trade-offs. i.e., “why bother?”

• Four simple things to put it in practice in an object-oriented
approach.

@ArgesRic

Getting to know each other

@ArgesRic

Anyone working without
garbage collection?

@ArgesRic

Who’s working on a functional
programming language?

@ArgesRic

What are you working on?
Python? Ruby? Java? C#?

@ArgesRic

Who is already using
immutable data somewhere?

@ArgesRic

About me
• Software engineer, run Numergent.

• Run project-specific, distributed development teams.

• Work mostly with data-oriented projects, on media, health care
information management, and financial companies.

• Doing software development professionally for 20+, hacking around
for longer.

@ArgesRic

My path here

@ArgesRic

Come for the functional way,
stay for the immutable data.

@ArgesRic

Realized immutable data made
code easier to refactor.

@ArgesRic

@ArgesRic

@ArgesRic

@ArgesRic

If you have mutable data,
you have to take things on faith.

@ArgesRic

@ArgesRic

@ArgesRic

@ArgesRic

Can a long-lived object trust we
won’t change its parameters?

@ArgesRic

Why immutable data?

@ArgesRic

There is no frictionless
movement.

@ArgesRic

Stop thinking about operations,
start thinking about results

@ArgesRic

Immutability
is not
statelessness

@ArgesRic

You have a state.
Your state is your world view.

@ArgesRic

When your state changes,
you don’t discard knowledge.

@ArgesRic

A functional approach

@ArgesRic

Many inputs, one single output.

@ArgesRic

Values are immutable.

@ArgesRic

Functions do not trigger any
state side-effects.

@ArgesRic

Functional is about semantics,
languages just help

@ArgesRic

“The most boring things in the
universe”

“Clojure is Boring”

Constantin Dumitrescu @ BucharestFP

https://8thlight.com/blog/colin-jones/2016/10/06/clojure-is-boring.html

https://8thlight.com/blog/colin-jones/2016/10/06/clojure-is-boring.html

@ArgesRic

@ArgesRic

@ArgesRic

@ArgesRic

Show of hands again…
C# / Java users.

@ArgesRic

Strings!
• Do you have a problem understanding how they work?

• Are you worried that they’ll be changed from under you?

• Are you concerned about using it as a key in a dictionary?

• Have you had to check the implementation?

• Do you think they are exciting?

@ArgesRic

Strings are boring, reliable,
immutable data items.

@ArgesRic

@ArgesRic

void DoSomethingToObject()

In-place Add/Remove

ref and out

@ArgesRic

Dealing with unknowns

@ArgesRic

@ArgesRic

@ArgesRic

For an unknown method:

1. Poke it.
2. Read it.

@ArgesRic

Being fully acquainted with the
code is the only option with
variable data.

@ArgesRic

1. Have access to every source
involved.

2. Have the time available.

@ArgesRic

There’s unknowns everywhere.

The larger the team, the more
unknowns.

@ArgesRic

1. Not everyone will understand
the subtleties of the language.

@ArgesRic

2. Not everyone will understand
the subtleties of your code base.

@ArgesRic

But…

Single Responsibility Principle!

@ArgesRic

Cross-cutting concerns make
Single Responsibility non-trivial.

@ArgesRic

Eventually, you’ll encapsulate
your herd of methods.

@ArgesRic

Encapsulation reduces mental
clutter.

It also obscures.

@ArgesRic

Readability is a matter of habit.

@ArgesRic

Not only Readability,
but
Comprehensibility.

@ArgesRic

Functional, the OOP way

@ArgesRic

1. Structs can be a gateway drug.

@ArgesRic

2. Don’t mutate your objects.

@ArgesRic

Vector.Normalize()

Vector.Normalized

@ArgesRic

employee.Salary += 100

Employee SalaryChange(float v)

employee.SalaryChange(100)
.SetPosition(newTitle)
.SetSomeProp(true)

@ArgesRic

3. Write to Enumerables, not to
Collections.

@ArgesRic

3.a. Use the functional facilities
for result generation (Where,
Select, etc).

@ArgesRic

4. Use immutable collections.

.Net: https://msdn.microsoft.com/en-us/library/system.collections.immutable(v=vs.111).aspx

Java: https://github.com/google/guava/wiki/ImmutableCollectionsExplained

https://msdn.microsoft.com/en-us/library/system.collections.immutable(v=vs.111).aspx
https://github.com/google/guava/wiki/ImmutableCollectionsExplained

@ArgesRic

http://clojure.org/

http://clojure.org/

@ArgesRic

Where to do this?

@ArgesRic

Business logic?

@ArgesRic

Logic is about reasoning
according to strict principles of
validity.

@ArgesRic

UI?

@ArgesRic

UI should be about
representing state.

@ArgesRic

re-frame’s event conveyor belt

https://github.com/Day8/re-frame

https://github.com/Day8/re-frame

@ArgesRic

“Oh well, that’s all fine for two
divs and a listbox”

@ArgesRic

Defold

https://www.youtube.com/watch?v=ajX09xQ_UEg

https://www.youtube.com/watch?v=ajX09xQ_UEg

@ArgesRic

For a simple UI, anything will do.

For a complex UI,
immutability helps.

@ArgesRic

Data layer?

@ArgesRic

@ArgesRic

Where NOT to do this?

@ArgesRic

Is RAM a concern?
Is the GC hit a concern?
Is raw performance a concern?

@ArgesRic

Why do this?

@ArgesRic

Trading off GC hit for a codebase
that’s easier to reason about.

@ArgesRic

You’ll never have to wonder
about side-effects when
refactoring again.

@ArgesRic

You’ll write code that’s easier to
delete.

@ArgesRic

Easier threading.

Easier to offload processing.

@ArgesRic

"Who’s holding these objects?"

Who cares?

@ArgesRic

Immutable data lets you focus
on comprehension,
not memorization.

@ArgesRic

Conclusions

@ArgesRic

Immutability frees you to change
your mind.

@ArgesRic

To be in control, you have to
know.

Variability demands you take
things on faith.

@ArgesRic

Try some functional patterns.

Replace trust with certainty.

@ArgesRic

Questions?

https://speakerdeck.com/ricardojmendez/flexibility-through-immutability

https://speakerdeck.com/ricardojmendez/flexibility-through-immutability

@ArgesRic

Thank you!
Ricardo J. Méndez

ricardo@numergent.com

https://speakerdeck.com/ricardojmendez/flexibility-through-immutability

mailto:ricardo@numergent.com
https://speakerdeck.com/ricardojmendez/flexibility-through-immutability

	Folie 1
	What we’ll talk about
	Getting to know each other
	Anyone working without garbage collection?
	Who’s working on a functional programming language?
	What are you working on? Python? Ruby? Java? C#?
	Who is already using immutable data somewhere?
	About me
	My path here
	Come for the functional way, stay for the immutable data.
	Realized immutable data made code easier to refactor.
	Folie 12
	Folie 13
	Folie 14
	If you have mutable data, you have to take things on faith.
	Folie 16
	Folie 17
	Folie 18
	Can a long-lived object trust we won’t change its parameters?
	Why immutable data?
	There is no frictionless movement.
	Stop thinking about operations, start thinking about results
	Immutability is not statelessness
	You have a state. Your state is your world view.
	When your state changes, you don’t discard knowledge.
	A functional approach
	Many inputs, one single output.
	Values are immutable.
	Functions do not trigger any state side-effects.
	Functional is about semantics, languages just help
	“The most boring things in the universe” “Clojure is Boring”
	Folie 32
	Folie 33
	Folie 34
	Show of hands again… C# / Java users.
	Strings!
	Strings are boring, reliable, immutable data items.
	Folie 38
	void DoSomethingToObject() In-place Add/Remove ref and out
	Dealing with unknowns
	Folie 41
	Folie 42
	For an unknown method: 1. Poke it. 2. Read it.
	Folie 44
	Folie 45
	Folie 46
	1. Not everyone will understand the subtleties of the language.
	Folie 48
	But… Single Responsibility Principle!
	Cross-cutting concerns make Single Responsibility non-trivial.
	Eventually, you’ll encapsulate your herd of methods.
	Encapsulation reduces mental clutter. It also obscures.
	Readability is a matter of habit.
	Not only Readability, but Comprehensibility.
	Functional, the OOP way
	1. Structs can be a gateway drug.
	2. Don’t mutate your objects.
	Vector.Normalize() Vector.Normalized
	Folie 59
	3. Write to Enumerables, not to Collections.
	Folie 61
	4. Use immutable collections.
	Folie 63
	Where to do this?
	Business logic?
	Folie 66
	UI?
	UI should be about representing state.
	re-frame’s event conveyor belt
	“Oh well, that’s all fine for two divs and a listbox”
	Defold
	Folie 72
	Data layer?
	Folie 74
	Where NOT to do this?
	Folie 76
	Why do this?
	Folie 78
	Folie 79
	You’ll write code that’s easier to delete.
	Easier threading. Easier to offload processing.
	"Who’s holding these objects?" Who cares?
	Folie 83
	Conclusions
	Immutability frees you to change your mind.
	Folie 86
	Try some functional patterns. Replace trust with certainty.
	Questions?
	Thank you!

