
Code Reviews: Techniques and Tips

Rabea Gransberger

@rgransberger

About Me

Rabea Gransberger

•Computer Science Diploma 2008

• Java Developer, Project Lead at MEKOS, Bremen

–Code Review supported by tools in all projects

•Co-Organizer JUG Bremen

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Agenda

•Why do Code Reviews?

•How to do Reviews?

•Which Tools are available?

•Tips for Developers and Reviewers

•Which social problems can occur?

•Time for Questions

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

INTRODUCTION

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Why Code Reviews?

•Find errors

• Increase customer satisfaction

•Pareto principle (80/20 rule)

•Quality of code

•Education for whole team

•Less stress

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Project cost

[10]

Bugs Cost

After Development 463

After QA/Test 321 200$ * 142 fixes

After Customer 194 1000$ * 127 fixes

Cost of fixing bugs 155k $

+ Cost of 194 latent bugs 194k $

Total 349k $

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Project cost

Bugs Cost

After Development 463

After Code Review 180 25$ * 283 fixes

After QA/Test 113 200$ * 67 fixes

After Customer 32 1000$ * 81 fixes

Cost of fixing bugs 101k $

+ Cost of 32 latent bugs 32k $

Total 133k $ (349 k $)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

We already do TDD…

•Readable code?

•Errors not are not only found in code:

–Requirements

–Design

–Documentation

–Test cases

[3]

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

https://lol.browserling.com/full-stack-hires.png

PROCESS & TECHNIQUES

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Process Types

•Formal:
–Inspection: formal meeting with whole team

–Audit: by external company

• Informal / Lightweight:
– Pair Programming: 2 developers, 1 keyboard

– Walkthrough: Author shows code to Reviewer

– Tool-supported Review

•20 % time, same number issues

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Example: Task based review process

Roles: Author / Reviewer 1-*
24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Task Implement
Review

Request
Review

-1
Reopen

+1
Done

Review
Comments

Changes

1 - *

Pre-Requisites

•Process backed by Team and Management

•Deal with criticism: Code quality is important

•Define standards: Syntax, naming, frameworks

•Comprehensible tasks

•Developers review own code before commit

•Define goals

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

A CODE REVIEW EXAMPLE

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

public class ReviewCodeExample {

public static BigDecimal FAC = new BigDecimal(0.1);

public Collection<String> getCarNames() {

List<Car> cars = getCarsFromDatabase();

List<String> carNames = new ArrayList<>();

for (Car car : cars) {

if (!carNames.contains(car))

carNames.add(car.getName());

}

return carNames;

}

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Who?

•Recommended: Every developer

•How many reviewers per request?

–min. 2 with different focus

–Recommended: Expert in domain of review

[1]

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

How?

•Read task and extract requirements

•Overview: What has changed?

•Have requirements been met?

•Check if code works by testing

• Inspect code line by line

• Identify issues, write comment and give priority

•Difficult: Identify missing parts

•Go slowly: 1 liners, at least 5min review
24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

How: Eye Tracking

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

When?

•Shortly after development/request

•Pre-Commit or Post-Commit

•Don’t postpone to day before release

•Maximum 90 min per review

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

What?

• Deviation from standard/requirements/code guidelines

• Code has to be readable. Prefer refactoring to comment

• Check coverage of new constants in if/switch

• if without else

• Correctness of exception handling

• Prefer immutable objects

• Spell check messages shown to users

• synchronized/transactions for atomic operations

• Watch out for Strings/Magic Numbers. Prefer value objects

Book (Java): T. Gee: What to Look for in a Code Review (2016)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

https://leanpub.com/whattolookforinacodereview

Example Checklist

1. Documentation: All subroutines are commented in clear language.

2. Documentation: Describe what happens with corner-case input.

3. Documentation: Complex algorithms are explained and justified.

4. Documentation: Code that depends on non-obvious behavior in
external libraries is documented with reference to external
documentation.

5. Documentation: Units of measurement are documented for
numeric values.

6. Documentation: Incomplete code is indicated with appropriate
distinctive markers (e.g. “TODO” or “FIXME”).

7. Documentation: User-facing documentation is updated (online
help, contextual help, tool-tips, version history).

8. Testing: Unit tests are added for new code paths or behaviors.

9. Testing: Unit tests cover errors and invalid parameter cases.

10. Testing: Unit tests demonstrate the algorithm is performing as
documented.

11. Testing: Possible null pointers always checked before use.

12. Testing: Array indexes checked to avoid out-of-bound errors.

13. Testing: Don’t write new code that is already implemented in an
existing, tested API.

14. Testing: New code fixes/implements the issue in question.

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

15. Error Handling: Invalid parameter values are handled properly early in
the subroutine.

16. Error Handling: Error values of null pointers from subroutine
invocations are checked.

17. Error Handling: Error handlers clean up state and resources no matter
where an error occurs.

18. Error Handling: Memory is released, resources are closed, and
reference counters are managed under both error and nonerror
conditions.

19. Thread Safety: Global variables are protected by locks or locking
subroutines.

20. Thread Safety: Objects accessed by multiple threads are accessed only
through a lock.

21. Thread Safety: Locks must be acquired and released in the right order
to prevent deadlocks, even in error-handling code.

22. Performance: Objects are duplicated only when necessary.

23. Performance: No busy-wait loops instead of proper thread
synchronization methods.

24. Performance: Memory usage is acceptable even with large inputs.

25. Performance: Optimization that makes code harder to read should only
be implemented if a profiler or other tool has indicated that the routine
stands to gain from optimization.

[10]

Everything?

• Just get started, every review helps

•Start with high risk changes:
–Change in important calculations

–Safety critical code, e.g. authentication

–Code without test coverage

–Code of new team members

–Change sets with high number of files touched

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

SMALL TOOLS

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

FindBugs

•Static code analysis

•Explanation with possible solution
–Bug: Method ReviewCodeExample.getFactor() passes

double value to BigDecimal Constructor

–This method calls the BigDecimal constructor that takes
a double, and passes a literal double constant value.
Since the use of BigDecimal is to get better precision
than double, by passing a double, you only get the
precision of double number space. To take advantage of
the BigDecimal space, pass the number as a string.

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Automated Review

• Errors which can easily get overlooked

–Naming and formatting

–Wrong API usage (BigDecimal example)

• Run before manual review

–Developer before commit

–Build-System/Continuous Integration

• Important: Handling of False-Positives

–FindBugs @SuppressFBWarnings

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

TOOL-BASED REVIEW

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Example: GitHub Pull Request

•Web-based Review

•Commit/Branch/Task-based Review

•Fork project / create branch / edit file on
master

•Create Pull Request

•Notification for Repo Owners

•Can add (line based) review comments on files

•Close or accept pull request

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

• Fork project on GitHub or create branch

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

• Fork project on GitHub or create branch

• Change file

• Mail: Notification Pull Request / Review

• Web: Pending Pull Request / Review

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Pull Request Review

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Review Tools

• Reviews in pull requests Github

• JetBrains Upsource *

• Atlassian Crucible

• Gerrit

• Review Board

• Phabricator Differential

• SmartBear Collaborator / CodeReviewer*

• ReviewClipse*
(* with IDE integration)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Tools Checklist

• Automatic Review creation via hooks from SCM

• Adding new changes to existing review

• Pre-/Post-Commit Review Support

• Patch/Live-Code

• Where are comments saved? Embedded in code, separate XML/Database?

• Overview with all pending reviews

• Tracking which code still needs review

• Comments and priorities and possibility to mark comment as closed

• Webpage / IDE Integration

• Notifications by mail

• Review by task / whole code base supported

• Statistics to check effects of review / improve process

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Example: Tools in the IDE

• IDE provides sufficient support for reviews

•SCM Integration

• Issue Tracker Integration

•Task Tags

•Example: Review at MEKOS with Eclipse/RTC

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Rational Team Concert

•Reviewer can query pending reviews

•Select Work-Item with double click

•Open attached Change-Sets to review code

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

RTC: Change Summary

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Open current code

Changed files

Commit comment

RTC: Diff View

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

After Before

public class ReviewCodeExample {

public static BigDecimal FAC = new BigDecimal(0.1);

public Collection<String> getCarNames() {

List<Car> cars = getCarsFromDatabase();

List<String> carNames = new ArrayList<>();

for (Car car : cars) {

//FIXME 4738 Use set instead of List

if (!carNames.contains(car))

carNames.add(car.getName());

}

return carNames;

}

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Review with Eclipse

•Write comments in code

•Prefix with Task-Tags TODO/FIXME + ID
//TODO #4738

•Deliver comments with commit message
“Review”

•Review gets Rejected
=> Work Item Reopen

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

View Review Comments

•Author gets notified about rejected review

•Find comments with Eclipse View Tasks

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Rework

Author

• Rewrite code and fix all
comments

• Remove task tag comments

• Commit with comment
„Rework Review“

• Work-Item to Verification
state

• Invite reviewer for next review

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Reviewer

• All task tags removed

• Re-Review code:

• Changes between “Review”
and “Rework” changesets

STATISTICS

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Statistics

Some review tools help to quantify positive
effects of review

Examples:

• Issues by classification

•Found issues

•% reviewed code compared to full code base

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Found Issues

• Maintenance 71,7 %

–Naming, Comments 16,7 %

–API Use/Formatting 13,0 %

–Structure/Organisational 16,2 %

–Solution Approach 20,6 %

• Functional Problems 21,4 %

• False positives 7,5 %
x

Industrial review, domain: Engineering, 9 Reviews, 1-4 Reviewer, 388
issues found [12]

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

PROCESS VARIATIONS

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Example: Task based review process

Roles: Author / Reviewer 1-*
24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Task Implement
Review

Request
Review

-1
Reopen

+1
Done

Review
Comments

Changes

1 - *

Process embedding

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Unit of work (IV-C1)

Release

Story/ Requirement

Task

Push/Pull/Comb. commit

Singular commit

Trigger (IV-C2)

Tool

Conventions

Publicness
(IV-C3)

Pre-commit

Post-commit
Unreviewed Release

Prevention (IV-C4)

Organizational

Pre commit review

Release branch

Swift

completion (IV-C5)

Priority

WIP limit

Time slot

Author’s responsibility

Blocking of process
(IV-C6)

Full Follow-up

Wait for Review

No Blocking

[20]

Reviewers

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Rules Count/Skip
(IV-D2)

Component

Author’s experience

Lifecycle phase

Change size

Pair programming

Reviewer’s choice

Author’s choice

Population
(IV-D3)

Everybody

Elite

Fixed

Assignment
(IV-D4)

Pull

Push

Mix

Fixed

Assignment Tool (IV-D5)

No Tool

Reviewer Recommendation

[20]

Checking

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Interaction (IV-E1)

On-demand

Asynchronous

Discussion

Meeting with author

Meeting without author

Temporal

Arrangement
(IV-E2)

Parallel

Sequential

Roles (IV-E3)

Yes

No

Detection Aids (IV-E5)

Checklists

Static code analysis

Testing

[20]

Reviewer changes code
(IV-E4)

Never

Sometimes

Feedback

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Communication of issues (IV-F1)

Written

Oral only

Oral stored

Handling of issues (IV-F2)

Resolve

Reject

Postpone

Ignore

[20]

Overarching

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Use of metrics (IV-G1)

Metrics in use

No metrics use

Tool specialization (IV-G2)

General-purpose

Specialized

[20]

TIPS & PRACTICAL EXPERIENCE

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Tips for developers

•Mistakes = Learn, don’t take personal!

•Education is essential for developers

•Reviews don’t replace questions. Talk!

•Refactoring in separate change set

•Checklist review own changes before commit

•Remind reviewer of important reviews

•Reviewer isn’t necessarily right. Discuss

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Tips for Reviewers

•Make sure you are not disturbed

•Prioritize if too many requests

•Take time, don’t rush and accept

•Don’t postpone reviews with many files

• If you can’t test it, ask for walkthrough

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Tips for Reviewers

•Wrong! Provide advice on how to do better

•Question don’t critize. Don’t get personal!

•Don’t fix code while reviewing (Bad fixes)

•Praise good code and personal advances

•Learn from team mates code

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Social Aspects

•Reviews are unnecessary, they just cost time.

•Process is boring

•Author and reviewer get into conflict

•Team members block process / approve fast

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Social Aspects

• Experience != Quality

• Critique can cause depression

• Big Brother Effect

• Review gets rejected x-times

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Code City

Codetrails Code City Plugin

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Related Tools / Concepts

•Code Coverage

•Code City / Code as a crime scene

•Continuous Integration Server

•Continuous Testing

•Mutation testing

•Random testing

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

SUMMARY

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Summary

•Begin slowly & use existing tools

•Define standards/checklists and use them

•Configure tools for automated reviews

•Create relaxed atmosphere

•Reward: Less support calls / happy customers

•Lowers overall project cost

•Adjust process as you go

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Summary

•Speak to each other

•Every code review helps!

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Questions?

Slides / Recordings:

•http://rgra.github.io

Contact information:

•Rabea Gransberger (LinkedIn, Xing)

•Twitter: @rgransberger

Feedback welcome!

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

http://rgra.github.io/

Sources

1. Understanding Open Source Software Peer Review: Review Processes, Parameters and Statistical Models, and
Underlying Behaviours and Mechanisms, Rigby, Dissertation, 2011

2. Convergent Contemporary Software Peer Review Practices, Rigby, 2013
3. Software Quality in 2002: A survey of the state of the art, Capers Jones, 2002
4. IEEE Standard for Software Reviews and Audits, IEEE Std 1028™-2008
5. Modernizing The Peer Code Review Process, KLOCWORK, White Paper, 2010
6. Code Reviews should be the universal rule of serious Software Development, Chhabra, Blog, 2012
7. How to hold a more effective code review, Stellman & Green, Blog, 2008
8. Code Review in Four Steps, Hayes, Blog, 2014
9. 11 proven practices for more effective, efficient peer code review, Cohen, 2011
10. Best Kept Secrets of Peer Code Review, Cohen, Smart Bear Inc., 2006
11. Don’t waste time on Code Reviews, Bird, Blog, 2014
12. Code Review Defects, Mäntylä & Lassenius, 2007
13. The Ten Commandments of Egoless Programming, Atwood, Blog, 2006
14. Improve Quality and Morale: Tips for Managing the Social Effects of Code Review, Smartbear, 2011
15. Code Reviews Resourcen von Tobias Baum
16. What to Look for in a Code Review, Gee, 2016
17. 20 Best Code Review Tools for Developers, Blog, 2015
18. Effektiver Einsatz von Code Review, OIO, 2015
19. Technische Schulden in Architekturen erkennen und beseitigen, Dr. C. Lilienthal, 2016
20. A Faceted Classification Scheme for Change-Based Industrial Code Review Processes, T. Baum, 2016

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

http://users.encs.concordia.ca/~pcr/paper/Rigby2011Dissertation.pdf
http://www.cabird.com/papers/rigby2013convergent.pdf
http://www.cs.nyu.edu/artg/Producing_Production_Quality_Software/Fall2005/lectures/SOFTWARE_QUALITY_IN_2002_CAPERS_JONES.pdf
http://www.klocwork.com/getattachment/e0951a39-084d-4bbb-938a-d477d357d080/Modernizing-the-Peer-Code-Review-Process?sitename=Klocwork
http://blog.manishchhabra.com/2012/12/code-reviews-should-be-the-universal-rule-of-serious-software-development/
http://www.stellman-greene.com/2008/09/20/how-to-hold-a-more-effective-code-review/
http://www.bignerdranch.com/blog/code-review-four-steps/
http://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/
http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://swreflections.blogspot.de/2014/08/dont-waste-time-on-code-reviews.html
http://lib.tkk.fi/Diss/2009/isbn9789512298570/article5.pdf
http://blog.codinghorror.com/the-ten-commandments-of-egoless-programming
http://support.smartbear.com/support/media/resources/cc/CodeReviewSocialEffects.pdf
https://tobiasbaum.github.io/
https://leanpub.com/whattolookforinacodereview
http://devzum.com/2015/04/best-code-review-tools/
http://www.oio.de/m/konf/diverse/Effektiver-Einsatz-von-Code-Reviews_DevDay 2015.pdf
http://de.slideshare.net/cairolali/technische-schulden-in-architekturen-erkennen-und-beseitigen
https://tobiasbaum.github.io/rp/classification.pdf

