Code Reviews: Techniques and Tips

Rabea Gransberger
@rgransberger

About Me

Rabea Gransberger

* Computer Science Diploma 2008
* Java Developer, Project Lead at MEKOS, Bremen

—Code Review supported by tools in all projects
* Co-Organizer JUG Bremen

Agenda

* Why do Code Reviews?

* How to do Reviews?

* Which Tools are available?

* Tips for Developers and Reviewers
* Which social problems can occur?
* Time for Questions

INTRODUCTION

Why Code Reviews?

*Find errors

* Increase customer satisfaction
* Pareto principle (80/20 rule)

* Quality of code

* Education for whole team

* Less stress

Project cost

| Bug| ____ Cost
After Development 463

After QA/Test 321 200S * 142 fixes

After Customer 194 1000S * 127 fixes

Cost of fixing bugs 155k S

+ Cost of 194 latent bugs 194k S

Total 349k S

[10]

Project cost

| Bugs| _____ Cost

After Development 463

After Code Review 180 25S * 283 fixes
After QA/Test 113 200S * 67 fixes
After Customer 32 1000S * 81 fixes
Cost of fixing bugs 101k S
+ Cost of 32 latent bugs 32k S

Total 133k $ (349 k $S)

We already do TDD...

* Readable code?

*Errors not are not only found in code:
—Requirements
—Design
—Documentation

—Test cases

[3]

https://lol.browserling.com/full-stack-hires.png

PROCESS & TECHNIQUES

Process Types

* Formal:
—Inspection: formal meeting with whole team
—Audit: by external company

*Informal / Lightweight:
— Pair Programming: 2 developers, 1 keyboard
— Walkthrough: Author shows code to Reviewer

— Tool-supported Review

* 20 % time, same number issues

Example: Task based review process

Changes
1-*

|
Review

= >
Task » Implement Request

Review
Comments

Roles: Author / Reviewer 1-*

Codemotion Berlin / Code Review s (Rabea Gransberger @rgransberger)

Pre-Requisites

* Process backed by Team and Management

* Deal with criticism: Code quality is important

* Define standards: Syntax, naming, frameworks
* Comprehensible tasks

* Developers review own code before commit

* Define goals

A CODE REVIEW EXAMPLE

public class ReviewCodeExample {

public static BigDecimal FAC = new BigDecimal(@.1);

public Collection<String> getCarNames() {
List<Car> cars = getCarsFromDatabase();
List<String> carNames = new ArrayList<>();
for (Car car : cars) {
if (!carNames.contains(car))
carNames.add(car.getName());

}

return carNames;

NO NEED To DOUBLE CHECK

THIS CcHANGE LiST, iF SoME Pro -

BLEMS REMAIN THE REVIEWER
Will CATCH THEM.

Wy

1

-

U
)

/I;’lg'vll
A o 1

f
/

’/

NO NEED To Look AT
THiS CHANGE LiST ToO CcLOSELY,

'\ SuRE THE AVUTHoR
UNOWS WHAT HE'S DoOiNG.

24.10.2016

Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Who?

* Recommended: Every developer

* How many reviewers per request?
—min. 2 with different focus
—Recommended: Expert in domain of review

[1]

How?

* Read task and extract requirements

* Overview: What has changed?

* Have requirements been met?

* Check if code works by testing

*Inspect code line by line

* [dentify issues, write comment and give priority
* Difficult: Identify missing parts

*Go slowly: 1 liners, at least 5min review

How: Eye Tracking

Fixation num.

1 31 61 91 121
/I'T"\J,JI TT T TTTTT H‘_I‘ TITTTTTTITTT T I TTTT I TTTT TTTT TTITTTITTT

01 void main(void)| :f N TN

02 int i, num, isPrime = 0O; l \ ! N

03 | 1 \\ s N\,

04 printf{("Input Number:"); | vl I \

05 scanf("%d", &num); ‘t dy N V(e ¢ \, ln A]

06 '," " Py N m

07 1=2; \ \ [\ :

08 while(i <num)}{ \ \ \ -

09 if(num%i==0) L h VO \

10 isPrime = [; \ T\ N .

11 i=1+1; \ Hl Voo \

12 1st scan \) \ \ \

J \ \ :

13 \ | N ! 2nd scan

14 if(isPrime == 1) AN 1 \.\

15 printf("%d is prime number.¥n", num); \ b ' ‘N /

16 else \\ ; .\‘-._ /

17 printf("%d is NOT prime number¥n", num); e s

18}

When?

* Shortly after development/request

* Pre-Commit or Post-Commit

* Don’t postpone to day before release
* Maximum 90 min per review

What?

* Deviation from standard/requirements/code guidelines

* Code has to be readable. Prefer refactoring to comment

* Check coverage of new constants in if/switch

* if without else

* Correctness of exception handling

* Prefer immutable objects

* Spell check messages shown to users

* synchronized/transactions for atomic operations

* Watch out for Strings/Magic Numbers. Prefer value objects
Book (Java): T. Gee: What to Look for in a Code Review (2016)

https://leanpub.com/whattolookforinacodereview

Example Checklist

Documentation: All subroutines are commented in clear language.
Documentation: Describe what happens with corner-case input.
Documentation: Complex algorithms are explained and justified.

WP

Documentation: Code that depends on non-obvious behavior in
external libraries is documented with reference to external
documentation.

5. Documentation: Units of measurement are documented for
numeric values.

6. Documentation: Incomplete code is indicated with appropriate
distinctive markers (e.g. “TODO” or “FIXME”).

7. Documentation: User-facing documentation is updated (online
help, contextual help, tool-tips, version history).

Testing: Unit tests are added for new code paths or behaviors.
9. Testing: Unit tests cover errors and invalid parameter cases.

10. Testing: Unit tests demonstrate the algorithm is performing as
documented.

11. Testing: Possible null pointers always checked before use.
12. Testing: Array indexes checked to avoid out-of-bound errors.

13. Testing: Don’t write new code that is already implemented in an
existing, tested API.

14. Testing: New code fixes/implements the issue in question.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

Error Handling: Invalid parameter values are handled properly early in
the subroutine.

Error Handling: Error values of null pointers from subroutine
invocations are checked.

Error Handling: Error handlers clean up state and resources no matter
where an error occurs.

Error Handling: Memory is released, resources are closed, and
reference counters are managed under both error and nonerror
conditions.

Thread Safety: Global variables are protected by locks or locking
subroutines.

Thread Safety: Objects accessed by multiple threads are accessed only
through a lock.

Thread Safety: Locks must be acquired and released in the right order
to prevent deadlocks, even in error-handling code.

Performance: Objects are duplicated only when necessary.

Performance: No busy-wait loops instead of proper thread
synchronization methods.

Performance: Memory usage is acceptable even with large inputs.
Performance: Optimization that makes code harder to read should only
be implemented if a profiler or other tool has indicated that the routine

stands to gain from optimization.
[10]

Everything?

* Just get started, every review helps

e Start with high risk changes:
—Change in important calculations
—Safety critical code, e.g. authentication
—Code without test coverage
—Code of new team members
—Change sets with high number of files touched

SMALL TOOLS

g public class ReviewCodeExample {
]

-

10 public static BigDecimal FAC = new BigDecimal(@.1);
11

12= public Collection<String> getCarNames() {

13 List<Car> cars = getCarsFromDatabase();

14 List<String>» carNames = new ArraylList<>();

15 for (Car car : cars) {

16 if (!carNames.contains(car))

17 carNames.add(car.getName());

18 }

19 return carNames;

20)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

g public class ReviewCodeExample {
]

-

#10 public static BigDecimal FAC = new BigDecimal(©.1);
11
12= public Collection<String> getCarNames() {
13 List<Car> cars = getCarsFromDatabase();
14 List<String> carNames = new ArraylList<>();
15 for (Car car : cars) {
#16 if (lcarNames.contains(car))
17 carNames.add(car.getName());
18 !
19 return carNames;

20)

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

FindBugs

e Static code analysis

* Explanation with possible solution

—Bug: Method ReviewCodeExample.getFactor() passes
double value to BigDecimal Constructor

—This method calls the BigDecimal constructor that takes
a double, and passes a literal double constant value.
Since the use of BigDecimal is to get better precision
than double, by passing a double, you only get the
precision of double number space. To take advantage of
the BigDecimal space, pass the number as a string.

Automated Review

* Errors which can easily get overlooked
—Naming and formatting
—Wrong API usage (BigDecimal example)
* Run before manual review
—Developer before commit
—Build-System/Continuous Integration
* Important: Handling of False-Positives
—FindBugs @SuppressFBWarnings

TOOL-BASED REVIEW

Example: GitHub Pull Request

* Web-based Review
 Commit/Branch/Task-based Review

* Fork project / create branch / edit file on
master

* Create Pull Request

* Notification for Repo Owners

e Can add (line based) review comments on files
*Close or accept pull request

ReviewerTimon § CodeReview

Pull Request Demo

D 1 commit 7 1 branch 5 0 releases

.i!i Branch- master~ CodeReview / 4+

Initial commit

ReviewerTimon authored 19 minutes ago

@ Watch ~

&5 1 contributar

latest commit a36fdbfb7c @-
B README.md

Initial commit

EE README.md

CodeReview

IPuII Request Demo I

24.10.2016

Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

19 minutes ago

1

+ Star 0 ¥ Fork

1

<3 Code

(@ lssues 0

Il Pull requests 0

B3 Wiki

4~ Pulse

L Graphs

55H clone URL
git@github.com:Revis @.

ou can clone with HTTPS, SSH,
or Subvergion. @

¥ Clone in Desktop

&» Download ZIP

m CodeReview

oreed ttom ReviewerTimon/CodeReview

Pull Request Demo — Edit

D 2 commits ¥ 1 branch

=i Branch: master + | CocdeReview / +

This branch is 1 commit ahead of ReviewerTimon:master.

Update README.md

._l'l._. rgra authored 5 minutes ago

E README.md Update README.md

E2 README.md

CodeReview

IDemo for Pull Request Reviews via GitHub I

25 0 releases

& Unwatch ~ 1

&% 1 contributor

Pull request Compare

latest commit 45a93861a9 B2

5 minutes ago

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Star 0 ¥ Fork 1

£» Code
Il Pull requests 0

Ed Wik

4~ Pulse

lili Graphs

L} Settings

HTTPS clone URL
https://github.com/r @.

You can clone with HTTPS, SSH,
or Subversion.

] Clone in Desktop

&> Download ZIP

n [Commit changes

Update README md

Commit/Branch/Pull request

@ =0 Commit directly to the master branch
@ [Create a new branch for this commit and start a pull request. Learn more about pull requests.

‘ ¥ rgra-patch-1 |

Propose file change

Pull Request Review

* Mail: Notification Pull Request / Review
[CodeReview] Update README.md (£1) Rabea Gransberger

* Web: Pending Pull Request / Review

ReviewerTimon -

rgra opened pull request ReviewerTimon/CodeReview#1
' Update README.md

1 commit with 1 addition and 1 deletion

14:34

Update README.md
rgra wants to merge 1 commit into reviewerTimon:master frOM rgra:master

¥® Conversation 3 -0- Commits 1 Files changed 1

Showing 1 changed file with 1 addition and 1 deletion.

2 Enm README . md

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

2 EE ' README.md

| @@ -1,2 +1,2 @@
1 # CodeReview
2 | EPull Request Demo

44 ReviewerTimon added a note an hour ago

Thx, this wasn't helpful

Add a line note ‘

|2 +Demo for Pull Request Reviews via GitHub

44 ReviewerTimon added a note an hour ago

Do you have a link available to show how this is working?

Review Tools

* Reviews in pull requests Github

* JetBrains Upsource *

* Atlassian Crucible

* Gerrit

* Review Board

* Phabricator Differential

* SmartBear Collaborator / CodeReviewer*

* ReviewClipse*
(* with IDE integration)

Tools Checklist

Automatic Review creation via hooks from SCM

Adding new changes to existing review

* Pre-/Post-Commit Review Support

* Patch/Live-Code

* Where are comments saved? Embedded in code, separate XML/Database?
e Overview with all pending reviews

* Tracking which code still needs review

* Comments and priorities and possibility to mark comment as closed
* Webpage / IDE Integration

* Notifications by mail

* Review by task / whole code base supported

* Statistics to check effects of review / improve process

Example: Tools in the IDE

* IDE provides sufficient support for reviews
* SCM Integration
*[ssue Tracker Integration

* Task Tags

* Example: Review at MEKOS with Eclipse/RTC

~ 4738: KM Stand Ja/Nein Kontextmend &3

.| Taska738 ~ ~— |D &P e & [Sove
Summary:* KM Stand Ja/Nein Kontextmeni Status —> & | Verify v
~ Details v Description &
Type: E [T”k '] Kartenbearbeitung Kontextmeni KM-Stand JA/Nein -
Owned By: | — v
Priority: = [Low V]
Planned For: |-> Sprint 28 (0.9.207) v|

Quick Information
[8\ Subscribers(1): RG

A Change Sets(3): #1, #2, #3
% Approval: Pending (2 of 2)

Change-Sets
Reviewsg:sson

B —————m——

Overview Update' Links | Approvals ' History‘

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Add Comment

4738: KM Stand Ja/Nein Kontextmena $2 = m

v
, Task4738 ~ BB EE S [Save
Summary:* KM Stand Ja/Nein Kontextmenu & Verify 7
Approvals
Approver State Due New Approval... ‘
- ,
4 [_Approval O Pending ——)
o _ | @ Pending Edit Approval...
| % Rabea Gransberger @ Pending - Add Approver...
T Approved
Rejected Edit State
. Pendinq '
Reviewer e
i Add Comment

Review-Status

Overview |Update | Links | Approvals| History|

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Rational Team Concert

* Reviewer can query pending reviews

B Work Items §3 Lty v/ P v Qv v

Found 3 work items - My Pending Approvals
Id P S Summary Resolution Date Planned For
4757 = Kotrakt zu Kontrakt umbenennen Feb 18, 2015, 11:40 AM =3 Sprint 28 (0.9.207)
4738 m KM Stand Ja/Nein Kontextmena Feb 16, 2015, 11:03 AM =3 Sprint 28 (0.9.207)
4714 Prifung Bankdaten nur Deutschland Feb 9, 2015,12:13 PM =3 Sprint 28 (0.9.207)

*Select Work-Item with double click
* Open attached Change-Sets to review code

RTC: Change Summary

25| Change Summary 22
Showing 3 change sets - paths resolved with OTIS Stream

a4 J5 OTIS
4 (= de.mekos.tav.card.ui.contrib.otis
443 fragmentxml
a4 <5 OTISTAV
4 (> de.mekos.tav.card.ui

9@ pluginxml
4 (= de.mekos.tav.card.ui/src/de/mekos/tav/card/commands
[Jgg ASetKmReadingRequestEnabledActionHandler.java

Changed files

|Jg SetKkmReadingRequestEnabledFalseActionHan ===
[Jg3 SetKkmReadingRequestEnabled TrueActionHan N

Comment

L Open current code

Upen in Compare Editor
Open Remote Fi

ate Created

v 4738: KM Stand Ja/Nein Kontextmend - ActionHan

4Ierfu

Open Local File

leb 16, 2015 10:59 AM

i}

Commit comment

24.10.2016

Show History

Annotate

Ctrl+Shift+H, H

Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

RTC: Diff View

£° pluginaxml 52

vb Properties Afte r

Before

Plug-in Source Compare w I

| LT W .Y
pluginxml (after) (read-only) N | plugin yml (hefore) (read-onky). N J
[29p name="Fahrzeugklassifizierung &@ndern"> [293 categoryld="de.mekos.tav.category.card" g
29p </command> [294 defaultHandler="de.mekos.tav.card.commands.ChangeCardy\
298 |295 id="de.mekos.tav.card.commands.changeCardVehicleClass]
29p categoryId="de.mekos.tav.category.card" [296 name="Fahrzeugklassifizierung &ndern">
defaultHandler="de.mekos.tav.card.commands.SetKmReadingRe(1297 </command>
id="de.mekos.tav.card.commands.setKmReadingRequestEnabled 298 </extension>
name="8&apos ;KM-Stand Abfrage' aktivieren"> 299 <extension
</command> |300 point="de.mekos.jface.tools.composite”>
|301 <composite
categoryId="de.mekos.tav.category.card" 302 class="de.mekos.tav.card.composites.CustomerCardsCompq _|
defaultHandler="de.mekos.tav.card.commands.SetKmReadingRe([3@3 id="customer.cards"> L=
id="de.mekos.tav.card.commands.setKmReadingRequestEnabledi 304 </composite>
name="8&apos ;KM-Stand Abfrage' deaktivieren"> 305 </extension>
</command> 306 <extension
1p </extension> 387 point="org.eclipse.ui.menus"> >
<| i] ¥ <| T] ¥
24.10.2016

Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

public class ReviewCodeExample {

public static BigDecimal FAC = new BigDecimal(@.1);

public Collection<String> getCarNames() {
List<Car> cars = getCarsFromDatabase();
List<String> carNames = new ArrayList<>();
for (Car car : cars) {

if (!carNames.contains(car))
carNames.add(car.getName());

}

return carNames;

Review with Eclipse

* Write comments in code

* Prefix with Task-Tags TODO/FIXME + ID
//TODO #4738

* Deliver comments with commit message
“Review”

* Review gets Rejected
=> Work Item Reopen

View Review Comments

e Author gets notified about rejected review

* Find comments with Eclipse View Tasks

= Tasks 3

ion

4738 Ergdnzung Machricht "Sie missen [dig] ...

Resource
ASetkmBeadi...

s

Show
Group By
Sort By

Mew Tasks View

Configure Contents...

P
© Configure Contents

[7] Show all items

Configurations:

() Show items that match all the configurations checked below

@ Show items that match any configuration checked below

[F] TODOs

[} Use item limits

Number of itemns visible per

e

@ On any element

() On any element in same project

() On selected element only
() On selected element and its children
() On working set: Window Working Set

v Completed

Completed (V] Not Completed
~ Priority

High [¥]Normal [V]Low

v Description:

Text: | contains v | #4738

>

m

Restore Defaults

Lo Jl

Cancel

24.10.2016

Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Rework

Author Reviewer

* Rewrite code and fix all All task tags removed
comments * Re-Review code:

* Remove task tag comments « Changes between “Review”

e Commit with comment and “Rework” changesets

,Rework Review"

e Work-Item to Verification
state

* |Invite reviewer for next review

STATISTICS

Statistics

Some review tools help to quantify positive
effects of review

Examples:

* [ssues by classification

* Found issues

* % reviewed code compared to full code base

Found Issues

* Maintenance 71,7 %
—Naming, Comments 16,7 %
—AP| Use/Formatting 13,0 %
—Structure/Organisational 16,2 %
—Solution Approach 20,6 %

* Functional Problems 21,4 %

* False positives 7,5 %

Industrial review, domain: Engineering, 9 Reviews, 1-4 Reviewer, 388
issues found [12]

PROCESS VARIATIONS

Example: Task based review process

Changes
1-*

|
Review

= >
Task » Implement Request

Review
Comments

Roles: Author / Reviewer 1-*

Codemotion Berlin / Code Review s (Rabea Gransberger @rgransberger)

Process embedding

Unit of work (IV-C1)
Release

Story/ Requirement
Task

Push/Pull/Comb. commit
Singular commit

Trigger (IV-C2)
Tool
Conventions

Unreviewed Release

Prevention (IV-C4)
Organizational

Pre commit review
Release branch

Publicness
(IV-C3)
Pre-commit
Post-commit

Swift

completion (IV-C5)
Priority

WIP limit

Time slot

Author’s responsibility

Blocking of process
(IV-C6)

Full Follow-up

Wait for Review

No Blocking

[20]

Reviewers

Rules Count/Skip
(IV-D2)

Component

Author’s experience
Lifecycle phase
Change size

Pair programming
Reviewer’s choice
Author’s choice

Population
(IV-D3)
Everybody
Elite

Fixed

Assignment
(IV-D4)

Pull

Push

Mix

Fixed

No Tool

Assignment Tool (Iv-D5)

Reviewer Recommendation

[20]

Checking

Interaction (IV-E1)
On-demand
Asynchronous
Discussion

Meeting with author
Meeting without author

Temporal Roles (IV-E3)
Arrangement Yes

(IV-E2) No

Parallel

Sequential

Reviewer changes code
(IV-E4)

Never

Sometimes

Detection Aids (IV-E5)
Checklists

Static code analysis
Testing

[20]

Feedback

Communication of issues (IV-F1)
Written

Oral only

Oral stored

Handling of issues (IV-F2)
Resolve

Reject

Postpone

Ignore

[20]

Overarching

Use of metrics (IV-G1)
Metrics in use
No metrics use

Tool specialization (IV-G2)
General-purpose
Specialized

[20]

TIPS & PRACTICAL EXPERIENCE

|ASCIIville by Todd Presta |

The Peer Code Review

Copyright 2007. Todd Presta. All rights reserved. http://www. asciiville.oom

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Tips for developers

* Mistakes = Learn, don’t take personal!

* Education is essential for developers

* Reviews don’t replace questions. Talk!

* Refactoring in separate change set

* Checklist review own changes before commit
* Remind reviewer of important reviews

* Reviewer isn’t necessarily right. Discuss

HOW TO MAKE A
GO0D CODE REVIEW

A\

L. ds

A\

geek & poke

AT LEAST WE
DON'T NEED TO
OBFLSCATE IT
BEFORE
SHIPPING

D\

. 5

RULE 1: TRY TO FIND
AT LEAST SOMETHING
POSITIVE

Tips for Reviewers

* Make sure you are not disturbed
*Prioritize if too many requests

* Take time, don’t rush and accept

* Don’t postpone reviews with many files
*|f you can’t test it, ask for walkthrough

Tips for Reviewers

+Wrengl Provide advice on how to do better
* Question don’t critize. Don’t get personal!
*Don’t fix code while reviewing (Bad fixes)

* Praise good code and personal advances

e Learn from team mates code

HERE, READ THROUGH THIS
AND HIGHLIGHT ANTYTHING
TOU THINK SEEMS STUPID

/

MAN, MT BOSS SATS 1 NEED TO
COMPLETELY REWRITE MY CODE

IT CAN'T BE THAT BAD,
SURELY?

cer e T ARM MMM, ...

ki

Social Aspects

* Reviews are unnecessary, they just cost time.
*Process is boring

* Author and reviewer get into conflict

* Team members block process / approve fast

Social Aspects

* Experience != Quality

* Critique can cause depression
* Big Brother Effect

* Review gets rejected x-times

Code City

Codetrails Code City Plugin

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Related Tools / Concepts

* Code Coverage

* Code City / Code as a crime scene
* Continuous Integration Server

* Continuous Testing

* Mutation testing

e Random testing

SUMMARY

Summary

*Begin slowly & use existing tools

* Define standards/checklists and use them

* Configure tools for automated reviews

* Create relaxed atmosphere

* Reward: Less support calls / happy customers
* Lowers overall project cost

* Adjust process as you go

Summary

* Speak to each other

* Every code review helps!

24.10.2016 Codemotion Berlin / Code Reviews (Rabea Gransberger @rgransberger)

Questions?

Slides / Recordings:
e http://regra.github.io

Contact information:
* Rabea Gransberger (LinkedIn, Xing)
* Twitter: @rgransberger

Feedback welcome!

http://rgra.github.io/

Sources

1. Understanding Open Source Software Peer Review: Review Processes, Parameters and Statistical Models, and
Underlying Behaviours and Mechanisms, Rigby, Dissertation, 2011

2. Convergent Contemporary Software Peer Review Practices, Rigby, 2013

3. Software Quality in 2002: A survey of the state of the art, Capers Jones, 2002

4, IEEE Standard for Software Reviews and Audits, IEEE Std 1028™-2008

5. Modernizing The Peer Code Review Process, KLOCWORK, White Paper, 2010

6. Code Reviews should be the universal rule of serious Software Development, Chhabra, Blog, 2012

7. How to hold a more effective code review, Stellman & Green, Blog, 2008

8. Code Review in Four Steps, Hayes, Blog, 2014

9. 11 proven practices for more effective, efficient peer code review, Cohen, 2011

10. Best Kept Secrets of Peer Code Review, Cohen, Smart Bear Inc., 2006

11. Don’t waste time on Code Reviews, Bird, Blog, 2014

12. Code Review Defects, Mantylad & Lassenius, 2007

13. The Ten Commandments of Egoless Programming, Atwood, Blog, 2006

14. Improve Quality and Morale: Tips for Managing the Social Effects of Code Review, Smartbear, 2011

15. Code Reviews Resourcen von Tobias Baum

16. What to Look for in a Code Review, Gee, 2016

17. 20 Best Code Review Tools for Developers, Blog, 2015

18. Effektiver Einsatz von Code Review, OIO, 2015

19. Technische Schulden in Architekturen erkennen und beseitigen, Dr. C. Lilienthal, 2016

20. A Faceted Classification Scheme for Change-Based Industrial Code Review Processes, T. Baum, 2016

http://users.encs.concordia.ca/~pcr/paper/Rigby2011Dissertation.pdf
http://www.cabird.com/papers/rigby2013convergent.pdf
http://www.cs.nyu.edu/artg/Producing_Production_Quality_Software/Fall2005/lectures/SOFTWARE_QUALITY_IN_2002_CAPERS_JONES.pdf
http://www.klocwork.com/getattachment/e0951a39-084d-4bbb-938a-d477d357d080/Modernizing-the-Peer-Code-Review-Process?sitename=Klocwork
http://blog.manishchhabra.com/2012/12/code-reviews-should-be-the-universal-rule-of-serious-software-development/
http://www.stellman-greene.com/2008/09/20/how-to-hold-a-more-effective-code-review/
http://www.bignerdranch.com/blog/code-review-four-steps/
http://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/
http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://swreflections.blogspot.de/2014/08/dont-waste-time-on-code-reviews.html
http://lib.tkk.fi/Diss/2009/isbn9789512298570/article5.pdf
http://blog.codinghorror.com/the-ten-commandments-of-egoless-programming
http://support.smartbear.com/support/media/resources/cc/CodeReviewSocialEffects.pdf
https://tobiasbaum.github.io/
https://leanpub.com/whattolookforinacodereview
http://devzum.com/2015/04/best-code-review-tools/
http://www.oio.de/m/konf/diverse/Effektiver-Einsatz-von-Code-Reviews_DevDay 2015.pdf
http://de.slideshare.net/cairolali/technische-schulden-in-architekturen-erkennen-und-beseitigen
https://tobiasbaum.github.io/rp/classification.pdf

