
REDUX &
ANGULAR 2.0

Nir Kaufman

Nir Kaufman
Head of Angular Development @ 500Tech

- AngularJS evangelist
- International speaker
- Guitar player

*Photoshop

THE CHALLENGE

SPA BECOME
INCREASINGLY
COMPLICATED

THERE IS NOTHING
WRONG WITH THE
MVC PATTERN

IF YOU ARE
BUILDING A CRUD
APPLICATION

BUT WE ARE
PUSHING THE
ENVELOPE AS MUCH
AS WE CAN

MANAGING AN
EVER-CHANGING STATE
IS A HARD TASK

EVERYTHING IS
CONNECTED TO
EVERYTHING

VIEW

VIEW

CONTROLLER

VIEW

CONTROLLER

MODEL MODEL

VIEW

CONTROLLER

MODEL MODEL MODEL

VIEW

CONTROLLER

MODEL MODEL MODEL

MODEL

VIEW

CONTROLLER

MODEL MODEL MODEL MODEL

MODEL

VIEW

CONTROLLER

MODEL

LIBRARY

MODEL MODEL MODEL

MODEL MODEL

VIEW

CONTROLLER

MODEL

LIBRARYLIBRARY

MODEL MODEL MODEL

MODEL MODEL MODEL MODEL

CHANGING SOMETHING
BREAKS SOMETHING
SOMEWHERE

ENTER REDUX

https://github.com/nirkaufman/redux-playground

http://tinyurl.com/hq23lsa

PLAY ALONG

https://github.com/nirkaufman/redux-playground
https://github.com/nirkaufman/angular2-redux-workshop.git
http://tinyurl.com/hq23lsa
http://tinyurl.com/h4bqmut

REDUX IS A LIBRARY
FOR IMPLEMNETING A
DESIGN PATTERN

REDUX ATTEMPTS TO
MAKE STATE MUTATIONS
PREDICTABLE

INSPIRED BY
FLUX, CQRS &
EVENT SOURCING

REDUX INTREDUCE
THREE PRINCIPLES

SINGLE SOURCE
OF TRUTH
the state of your whole application is stored in
an object tree within a single store

THE TRUTH IS OUT THERE

class SideBarComponent {  
  
 private visible: boolean;  
 
 toggle(){  
 this.visible = !this.visible  
 }  
}

Stateful components

class TabsComponent {  
 
 private activeTab:Tab;  
 
 activateTab(tab) {  
 this.activeTab = tab;  
 }  
}

Stateful components

class Accounts {  
 
 private accounts: Account[];  
 
 getAccounts() {  
 return this.accounts;  
 }  
}

Data Models

const state = {  
 tabs: [],  
 accounts: [],  
 sidebar: {}  
};

Application state

app state

STOREUI

stateless UI

THE STATE IS
READ ONLY
the only way to mutate the state is to emit an
action, an object describing what happened

class Store {  
 
 private state: Object;  
 
 getState(){  
 return this.state;  
 }  
}

Read-only State

STOREUI

STATEgetState()

STOREUI

STATEgetState()

ACTIONdispatch(action)

PURE FUNCTIONS
to specify how the state tree is transformed
by actions, you write pure functions.

PURE FUNCTION
return value is only determined by its input values,
without observable side effects.

PURE
FUNCTION

Current State

Action

Next State

Calculate the next state

PURE
FUNCTION

Current State

Action

Next State

Reducer

Calculate the next state

Uni directional data flow

UI STOREactions

state

ENTER THE STORE

THE STORE IS THE
HEART OF REDUX

TO CREATE A STORE
WE NEED A REDUCER

import { createStore } from 'redux';  
 
const store = createStore(reducer);

import { createStore } from 'redux'; 
 
const store = createStore(reducer);

REDUCE METHOD
applies a function against an accumulator and
each value of the array (from left-to-right) to
reduce it to a single value.

function sum (previousVal, currentVal) {  
 return previousVal + currentVal;  
}  
 
[0, 1, 2, 3, 4].reduce(sum);

// => 10

Reduce in action

EVENT SOURCING
capture all changes to an application state as a
sequence of events.

function counter (state, action) {  
 switch (action) {  
 case 'up':  
 return state + 1;  
 case 'down':  
 return state - 1;  
 default:  
 return state;  
 }  
}  
 
['up', 'up', 'down'].reduce(counter, 0);

Simple counter app

THE REDUCER RETURNS
THE NEXT STATE

BASED ON A SEQUENCE
OF ACTIONS

THE SAME SEQUENCE
OF ACTIONS

WILL PRODUCE THE
SAME STATE

PREDICTABLE
STATE CONTAINER

STORE API
dispatch(action)

subscribe(listener)

getState()

replaceReducer(reducer)

HANDS ON!
implementing a working store
in less then 30 lines of code.

function createStore(reducer) {  
 let state = null;  
 const listeners = [];  
 
 function getState() {  
 return state;  
 }  
 
 function dispatch(action) {  
 state = reducer(state, action);  
 listeners.forEach(listener => listener())  
 }  
 
 function subscribe(listener) {  
 listeners.push(listener);  
 return function unsubscribe() {  
 let index = listeners.indexOf(listener);  
 listeners.splice(index, 1)  
 }  
 }  
 
 return { getState, dispatch, subscribe }  
}

ASYNC DATA FLOW

MIDDLEWARE
extension point between dispatching an action,
and the moment it reaches the reducer.

Async flow with middlewares

UI STOREaction

state

Async flow with middlewares

UI STORE

state

MIDDLEWARE
action action

export const middleware = store => next => action => {  
 return next(action)  
};

Middleware

- get the current state from the store
- pass an action to the next middleware
- access the provided action

ANGULAR & REDUX

ANGULAR IS A NEW
PLATFORM FOR BUILDING
COMPLEX MODERN SPA’S

https://github.com/nirkaufman/angular2-redux-workshop.git

http://tinyurl.com/h4bqmut

GET THE CODE

https://github.com/nirkaufman/angular2-redux-workshop.git
http://tinyurl.com/h4bqmut

git checkout master

AN ANGULAR APP IS A
TREE OF COMPONENTS

WE MAP PROPERTIES
TO THE STATE

WE DISPATCH ACTIONS
IN REACTION TO EVENTS

COMPONENT

COMPONENT

STORE

[properties](events)

actions

state

git checkout 01_project-structure

ANGULAR 2.0
ENCOURAGING AN
OOP APPROACH

TO USE DEPENDENCY
INJECTIONS WITH REDUX

WE WRAP STUFF IN
PROVIDERS

import {createStore} from “redux";
 import {RootReducer} from './reducers/root';
 
export class Store {  
 
 private store = createStore(rootReducer);  
 
 get state() {  
 return this.store.getState();  
 }  
 
 dispatch(action){  
 this.store.dispatch(action)  
 }  
}

WE COMBINE MULTIPLY
REDUCERS TO ONE
ROOT REDUCER

import {combineReducers} from 'redux';  
 
export const RootReducer = combineReducers({ 
 app: (state = 0) => state 
});

combineReducers in action

WE NEED TO REGISTER
OUR STORE PROVIDER
ON THE MODULE

@NgModule({  
 declarations: [AppComponent],  
 imports : [BrowserModule, HttpModule],  
 providers : [Store],  
 bootstrap : [AppComponent]  
})

NOW WE CAN INJECT
IT TO OUR COMPONENT
AND GET THE STATE!

export class AppComponent {  
 
 constructor(store: Store) {  
 console.log(store.state);  
 }  
}

git checkout 02_wiring

LIVE DEMO

Angular & Redux Workshop

https://github.com/nirkaufman/oscon-redux-angular-workshop

NEXT STEPS

Angular & Redux Workshop

https://leanpub.com/redux-book

THE COMPLETE
REDUX BOOK

https://leanpub.com/redux-book

Angular & Redux Workshop

RESOURCES
REDUX
http://redux.js.org/

https://egghead.io/series/getting-started-with-redux

CQRS & EVENT SOURCING
https://msdn.microsoft.com/en-us/library/dn568103.aspx

https://msdn.microsoft.com/en-us/library/dn589792.aspx

ANGULAR 2
angular-2-change-detection-explained.html

https://github.com/ngrx/store

https://github.com/angular-redux/ng2-redux

http://redux.js.org/
https://egghead.io/series/getting-started-with-redux
https://msdn.microsoft.com/en-us/library/dn568103.aspx
https://msdn.microsoft.com/en-us/library/dn589792.aspx
http://blog.thoughtram.io/angular/2016/02/22/angular-2-change-detection-explained.html
https://github.com/ngrx/store
https://github.com/angular-redux/ng2-redux

NIR KAUFMAN

nir@500tech.com

Head of Angular Development @ 500Tech

@nirkaufman

github.com/nirkaufman

meetup.com/Angular-AfterHours/

keep in touch!

http://github.com/nirkaufman
http://meetup.com/Angular-AfterHours/

