

What's

not
new

in

modular
Java!

Milen Dyankov
@ milendyankov

Featuring
JDK 9 Early Access
with Project Jigsaw

Developer advocate
@ Liferay

Think of

not new
as in

not new
concept
and not as in

not new
car

Why
is it

about time
to start
thinking
about

modularity
in Java?

JSR 277
JSR 294

JSR 376
JEP 200
JEP 201
JEP 220
JEP 260
JEP 261

...

2005

2014

Antwerp, Belgium,
November 2015

“Survey” at

What
is

modularity
/particularly in Java/

anyway?

"When I use a word,"
Humpty Dumpty said,

in rather a scornful tone,

"it means
just what I choose
it to mean - neither

more nor less."

Modularity Maturity Model
proposed by Dr Graham Charters

at the OSGi Community Event 2011

Level 1 Ad Hoc nothing

Level 2 Modules decoupled from artifact

Level 3 Modularity decoupled from identity

Level 4 Loose-Coupling decoupled from implementation

Level 5 Devolution decoupled from ownership

Level 6 Dynamism decoupled from time

Level 1 Ad Hoc nothing

Level 2 Modules decoupled from artifact

Level 3 Modularity decoupled from identity

Level 4 Loose-Coupling decoupled from implementation

Level 5 Devolution decoupled from ownership

Level 6 Dynamism decoupled from time

Level 7 Peter Kriens only available to people who are Peter Kriens

Modularity Maturity Model
proposed by Dr Graham Charters

at the OSGi Community Event 2011

Modularity Maturity Model
proposed by Peter Kriens

in foreword to “Java Application Architecture”

Level 1 Ad Hoc

Level 2 Modules

Level 3 Modularity

Level 4 Loose-Coupling

Level 5 Devolution

Level 6 Dynamism

Unmanaged / chaos

Managing dependencies

Proper isolation

Minimize coupling

Service-oriented architecture

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5 JuServices

Buzzword compliant
Modularity Maturity Model

Level 1 Monolith Unaware of own dependencies

Level 2 Composite Aware of infrastructural dependencies

Level 3 Containers Aware of functional dependencies

Level 4 Discovery Aware of functional requirements

Level 5 Adapts to changing requirementsJuServices

Buzzword compliant
Modularity Maturity Model

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5 JuServices

Buzzword compliant
Modularity Maturity Model

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5 JuServices

Buzzword compliant
Modularity Maturity Model

Buzzword compliant
Modularity Maturity Model

JuServices

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5

Buzzword compliant
Modularity Maturity Model

JuServices

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5 OSGi

Buzzword compliant
Modularity Maturity Model

JuServices OSGi

JSR 376

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5

Buzzword compliant
Modularity Maturity Model

JuServices OSGi

JSR 376

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5

What
is

modularity
 from

application
perspective ?

Java
application

Java
application

Java Platform

Libraries

O
SG

i

There is nothing
we can do about it!

O
SG

i

class loaders

There is nothing
we can do about it!

O
SG

i

class loaders

There is nothing
we can do about it!

Dynamic multi-layer
modular runtime!

O
SG

i

class loaders

There is nothing
we can do about it!

Dynamic multi-layer
modular runtime!

It's so easy,
everyone

should
release
bundles

(modules)!

O
SG

i

“Many
people claim

OSGi is hard without
acknowledging that modularizing

applications is the hard part.
 . . .

 JSR 376 will demonstrate that OSGi
was just the messenger and actually not the cause.”

Peter Kriens

J
SR

 3
7

6

J
SR

 3
7

6

Modules are
first class citizens!

J
SR

 3
7

6

Modules are
first class citizens!

 Nothing to do about it,
 must use modules!

J
SR

 3
7

6

Modules are
first class citizens!

 Nothing to do about it,
 must use modules!

It's so easy,
everyone

must
release
modules!

not new

except now
you kinda
have to

new
Modular
Java SE
Platform!

Modular
Java SE

Applications!

“A lot of people

will discover that

their babies are not as

modular as they thought”
Peter Kriens

When
is

“keep it
simple!”

not enough?

product
intermediate

intermediate

material

Product

Entity

Entity
Entity

Entity

Entity Entity

Offer

Offer

Offer

Offer

Offer

Offer

Offer

Offer

Offer

Offer

Offer

Application

Artifact

Artifact
Artifact

Artifact

Artifact Artifact

Export

Export

Export

Export

Export

Export

Export

Export

Export

Export

Export

Artifact

OSGi JSR 376

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

...

MANIFEST.MF

module com.mycompany.mymodule {

...

}

module-info.java

Level 2
decoupled from

artifact

Buzzword compliant
Modularity Maturity Model

JuServices OSGi

JSR 376

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5

OK!

Artifact

OSGi JSR 376

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Export-Package: \
com.mycompany.mypackage

...

MANIFEST.MF

module com.mycompany.mymodule {

 exports com.mycompany.mypackage;

...

}

module-info.java

Export

Level 3
decoupled from

identity

OSGi JSR 376

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Require-Bundle: \
other.module

Import-Package: \
com.some.package;
version="[2,3)",...

...

MANIFEST.MF

module com.mycompany.mymodule {

 requires other.module;

...

}

module-info.java

Artifact

Export

Artifact

Level 3
decoupled from

identity

OSGi JSR 376

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Require-Bundle: \
com.foo

Import-Package: \
com.generic.powerplug;
version="[2,3)",...

...

MANIFEST.MF

module com.mycompany.mymodule {

 requires com.foo;

...

}

module-info.java

Foo

Me

I need power plug!

I need Foo because
I know it offers
power plugs and
I know only Foo

offers power plugs!

Level 3
decoupled from

identity

OSGi JSR 376Level 3
decoupled from

identity

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Require-Bundle: \
com.foo

Import-Package: \
com.generic.powerplug;
version="[2,3)",...

...

MANIFEST.MF

module com.mycompany.mymodule {

 requires com.foo;

...

}

module-info.java

Foo

Me I'm compatible
with all 2.x.x

versions!

I expect
developer/user to
know which version

will work and provide
it on module path!

OSGi JSR 376Level 3
decoupled from

identity

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Export-Package: \
com.mycompany.mypackage;\

uses:="com.some.package”

...

MANIFEST.MF

module com.mycompany.mymodule {

 exports com.mycompany.mypackage;

 requires public other.module;

 ...

}

module-info.java

Artifact

Artifact

Artifact
Export

Uses

Export

OSGi JSR 376Level 3
decoupled from

identity

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.devices

Export-Package: \
com.mycompany.pc; \

uses:="foo.tools.powerplug”

...

MANIFEST.MF

module com.mycompany.devices {

 exports com.mycompany.pc;

 requires public foo.tools;

 ...

}

module-info.java

Me

Consumer

Foo

I used a power
plug from Foo!
You may need it!

I used something
from Foo tools,

so you now depend
on Foo tools

as well!

Buzzword compliant
Modularity Maturity Model

JuServices OSGi

JSR 376

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5

Not fully decoupled from identity!

OK!

OSGi JSR 376Level 4
decoupled from
implementation

Artifact

Artifact

Requirement
Need to
connect
device to

power outlet!

Capability
Can

connect
device to

power outlet!

RESOLVER

Bundles with custom
metadata

Requirements and
Capabilities with
LDAP like filters

Bundle lifecycle events
and listeners

Extender pattern

Nothing OOTB.
Use OSGi :)

Probably doable via
external resolver
dynamic modules and
layers

JEE or 3rd party
solutions on top of JSR
376 may provide
solutions

Buzzword compliant
Modularity Maturity Model

JuServices OSGi

JSR 376

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5

Not fully decoupled from identity!

Some very basic APIs only!

OK!

OSGi JSR 376Level 5

decoupled from
ownership & time

JuServices

Artifact

Artifact

REGISTRY

Service

Service

Service

Service

Service registry with
metadata

Finding services via
LDAP like filters

Service lifecycle,
events and listeners

Multiple component
frameworks

Whiteboard pattern

Traditional Java
ServiceLoader
(not dynamic) moved to
module descriptor

Alternative: minimal
standalone Java
applications with
external service
discovery

Buzzword compliant
Modularity Maturity Model

JuServices OSGi

JSR 376

Level 1 Monolith

Level 2 Composite

Level 3 Containers

Level 4 Discovery

Level 5

Not fully decoupled from identity!

Very limited service layer! DIY dynamism!

OK!OK!

Some very basic APIs only!

Does this mean JSR 376
got modularity wrong?

When they say

 modular Java
it means

just what they
choose it to mean -

neither
more nor less!

JSR 376 solves some
 issues in Java platform!

Level 5 modularity was never one of them!

Reliable
configuration

Strong
encapsulation

A scalable Java SE
Platform

Greater platform
integrity

Improved
performance

“... once modularization
becomes part of the
Java core tool set,

developers will begin to
embrace it en-masse,

and as they do so, they
will seek more robust

and more mature
solutions. Enter OSGi!”

Victor Grazi

When
an application

needs
modularity

at
higher level ?

The essence of
modularity is

Not knowing

1 platform

over 100 apps

over 600 modules

over 2500 μServices

Some examples of how

deals with not knowing

The essence of
modularity is

Not knowing

Require-Capability: \
osgi.contract; \
filter:="(&(osgi.contract=JavaJAXRS)(version=2))"

Provide-Capability: \
 osgi.contract; \
 osgi.contract=JavaJAXRS; \
 Uses:= "javax.ws.rs, \

javax.ws.rs.core, \
javax.ws.rs.client, \
javax.ws.rs.container, \
javax.ws.rs.ext"; \

 version:Version=2

Some examples of how

deals with not knowing

The essence of
modularity is

Not knowing

@Component(
 immediate = true,
 property = {"javax.portlet.name=other_Portlet"},
 service = PortletFilter.class
)
public class MyFilter implements RenderFilter {

...

Some examples of how

deals with not knowing

The essence of
modularity is

Not knowing

@Component(
 immediate = true,
 property = {"destination.name=" + MONITORING},
 service = {MessageListener.class}
)
public class MonitoringMessageListener ...

 @Reference(
 cardinality = ReferenceCardinality.MULTIPLE,
 policy = ReferencePolicy.DYNAMIC,
 policyOption = ReferencePolicyOption.GREEDY
)
 protected synchronized void registerProcessor(

...

Some examples of how

deals with not knowing

The essence of
modularity is

Not knowing

The essence of
modularity is

Not knowing

Which enforces
optimization for
Predictability

Which results in
application
Agility

The essence of
modularity is

Not knowing

Which enforces
optimization for
Predictability

milen.dyankov@liferay.com
@MilenDyankov

http://www.liferay.com
@Liferay

mailto:milen.dyankov@liferay.com

