
Beyond MySQL

Lorna Jane Mitchell, IBM Analytics
CodeMotion Berlin 2016

http://www.lornajane.net/resources

http://www.lornajane.net/resources

Beyond MySQL
MySQL is great!

If you're ready for something different, how about:

• PostgreSQL

• Redis

• CouchDB

PostgreSQL

About PostgreSQL
Homepage: https://www.postgresql.org/

• Open source project

• Powerful, relational database

https://www.postgresql.org/

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL

Not true. They are both approachable from both CLI and other web/GUI
tools, PostgreSQL has the best CLI help I've ever seen.

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL

Not true. They are both approachable from both CLI and other web/GUI
tools, PostgreSQL has the best CLI help I've ever seen.

Myth 2: PostgreSQL is more strict than MySQL

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL

Not true. They are both approachable from both CLI and other web/GUI
tools, PostgreSQL has the best CLI help I've ever seen.

Myth 2: PostgreSQL is more strict than MySQL

True! But standards-compliant is a feature IMO

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL

Not true. They are both approachable from both CLI and other web/GUI
tools, PostgreSQL has the best CLI help I've ever seen.

Myth 2: PostgreSQL is more strict than MySQL

True! But standards-compliant is a feature IMO

Myth 3: PostgreSQL is slower than MySQL for simple things

PostgreSQL Myths and Surprises
Myth 1: PostgreSQL is more complicated than MySQL

Not true. They are both approachable from both CLI and other web/GUI
tools, PostgreSQL has the best CLI help I've ever seen.

Myth 2: PostgreSQL is more strict than MySQL

True! But standards-compliant is a feature IMO

Myth 3: PostgreSQL is slower than MySQL for simple things

Not true. PostgreSQL has better query planning so is likely to be faster at
everything, and also has more features.

PostgreSQL Performance

Additional Data Types: UUID
PostgreSQL has a UUID data type to create unique identifiers

We can use it as a primary key:

CREATE TABLE products (
 product_id uuid primary key default uuid_generate_v4(),
 display_name varchar(255)
);

INSERT INTO products (display_name)
 VALUES ('Jumper') RETURNING product_id;

(you may need to create extension "uuid-ossp" first)

Additional Data Types: UUID
Look in the table:

 product_id | display_name
-------------------------------------+--------------
73089ae3-c0a9-4c0a-8287-e0f6ec41a200 | Jumper

RETURNING Keyword
Look at that insert statement again

INSERT INTO products (display_name)
 VALUES ('Jumper') RETURNING product_id;

The RETURNING keyword allows us to retrieve a field in one step - removes
the need for a last_insert_id() call.

Additional Data Types: array and hstore
Add some more interesting columns to the table:

ALTER TABLE products ADD COLUMN depts varchar(255)[];

ALTER TABLE products ADD COLUMN attrs hstore;

(you may need to enable hstore with create extension hstore)

Additional Data Types: array and hstore
Insert some data into the table

INSERT INTO products (display_name, depts, attrs)
 VALUES ('T-Shirt', '{"kids"}',
 'colour => red, size => L, pockets => 1');

display_ | depts | attrs
---------+----------------+--
 Jumper | |
 T-Shirt | {kids} | "size"=>"L", "colour"=>"red", "pockets"=>"1"
 Hat | {kids,holiday} | "colour"=>"white"

Additional Data Types: array and hstore
We can fetch data using those fields

SELECT display_name FROM products
 WHERE 'kids' = ANY(depts);

SELECT display_name FROM products
 WHERE attrs->'colour' = 'red';

Common Table Expressions (CTE)
Feature enables declaring extra statements to use later

Moves complexity out of subqueries, making more readable and reusable
elements to the query

Syntax:

WITH meaningfulname AS
 (subquery goes here joining whatever)
SELECT FROM meaningfulname ...

Common Table Expressions (CTE)

Common Table Expressions (CTE)
WITH costs AS
 (SELECT pc.product_id, pc.amount, cu.code, co.name
 FROM product_costs pc JOIN currencies cu USING (currency_id)
 JOIN countries co USING (country_id))
SELECT display_name, amount, code currency, name country
 FROM products JOIN costs USING (product_id);

display_name | amount | currency | count
-------------+--------+----------+---------
T-Shirt | 25 | GBP | UK
T-Shirt | 30 | EUR | Italy
T-Shirt | 29 | EUR | France

Window Functions
Window functions allow us to calculate aggregate values while still returning
the individual rows.

e.g. a list of orders, including how many of this product were ordered in total

Window Functions
SELECT o.order_id, p.display_name,
 count(*) OVER (PARTITION BY product_id) AS prod_orders
FROM orders o JOIN products p USING (product_id);

 order_id | display_name | prod_orders
--------------------------------------+--------------+-------------
 74806f66-a753-4e99-aeae-6d491f947f08 | T-Shirt | 6
 9ae83b3f-931e-4e6a-a8e3-93dcf10dd9ab | Hat | 3
 0030c58a-122c-4fa5-90f4-21ad531d3848 | Hat | 3
 3d5a0d76-4c7e-433d-b3cf-288ef473912d | Hat | 3

PostgreSQL Tips and Resources
• PhpMyAdmin equivalent: https://www.pgadmin.org/

• Best in-shell help I've ever seen (type \h [something])

• JSON features

• Indexes on expression

• Choose where nulls go by adding NULLS FIRST|LAST to your ORDER BY

• Fabulous support for geographic data http://postgis.net/

• Get a hosted version from http://compose.com

https://www.pgadmin.org/
http://postgis.net/
http://compose.com

Redis

About Redis
Homepage: http://redis.io/

Stands for: REmote DIctionary Service

An open source, in-memory datastore for key/value storage, and much more

http://redis.io/

Uses of Redis
Usually used in addition to a primary data store for:

• caching

• session data

• simple queues

Anywhere you would use Memcache, use Redis

Redis Feature Overview
• stores strings, numbers, arrays, sets, geographical data ...

• supports key expiry/lifetime

• great monitoring tools

• very simple protocols

Tools
Install the redis-server package and run it.

Be a spectator: telnet localhost 6379 then type monitor

Command line: redis-cli

Storing Key/Value Pairs
Store, expire and fetch values.

> set risky_feature on
OK
> expire risky_feature 3
(integer) 1
> get risky_feature
"on"
> get risky_feature
(nil)

Shorthand for set and expire: setex risky_feature 3 on

Storing Hashes
Use a hash for related data (h is for hash, m is for multi)

> hmset featured:hat name Sunhat colour white
OK
> hkeys featured:hat
1) "name"
2) "colour"
> hvals featured:hat
1) "Sunhat"
2) "white"

Finding Keys in Redis
The SCAN keyword can help us find things

127.0.0.1:6379> hset person:lorna twitter lornajane
(integer) 1
127.0.0.1:6379> scan 0 match person:*
1) "0"
2) 1) "person:Lorna"
2) "person:lorna"
127.0.0.1:6379> hscan person:lorna 0
1) "0"
2) 1) "twitter"
2) "lornajane"

Configurable Durability
This is a tradeoff between risk of data loss, and speed.

• by default, redis snapshots (writes to disk) periodically

• the snapshot frequency is configurable by time and by number of writes

• use the appendonly log to make redis eventually durable

Redis: Tips and Resources
• Replication is simple!

• Clustering needs external tools but is also fairly easy

• Sorted sets

• Supports pub/sub:

• SUBSCRIBE comments then PUBLISH comments message
• Excellent documentation http://redis.io/documentation

• Get a hosted version from http://compose.com

http://redis.io/documentation
http://compose.com

CouchDB

About CouchDB
Homepage: http://couchdb.apache.org/

A database built from familiar components

• HTTP interface

• Web interface Fauxton

• JS map/reduce views
CouchDB is a Document Database

http://couchdb.apache.org/

Schemaless Database Design
We can store data of any shape and size

Documents and Versions
When I create a record, I supply an id and it gets a rev:

$ curl -X PUT http://localhost:5984/products/1234
 -d '{"type": "t-shirt", "dept": "womens", "size": "L"}'

{"ok":true,"id":"1234","rev":"1-bce9d948a37e72729e689145286fd3ee"}

(alternatively, POST and CouchDB will generate the id)

Update Document
CouchDB has awesome consistency management

To update a document, supply the rev:

$ curl -X PUT http://localhost:5984/products/1234
 -d '{"_rev": "1-bce9d948a37e72729e689145286fd3ee",
 "type": "t-shirt", "dept": "womens", "size": "XL"}'

{"ok":true,"id":"1234","rev":"2-4b8a7e1bde15d4003aca1517e96d6cfa"}

Replication
CouchDB has the best database replication options imaginable:

• ad-hoc or continuous

• one directional or bi directional

• conflicts handled safely (best fault tolerance ever)

CouchDB Views
Querying CouchDB needs forward planning

• no ad-hoc queries

• create views and use them

• mapreduce in javascript

MapReduce
1. Work through the dataset (filtered if appropriate)

2. From those, output some initial keys and values (this is the map)

3. Records from step 2 with the same keys get grouped into buckets

4. The buckets are each processed by a reduce function to produce the
output

CouchDB Views: Example
A view is made of Map and Reduce functions, written in JavaScript

Map:

function (doc) {
 emit([doc.dept, doc.type], 1);
}

Reduce: try COUNT, SUM or STATS

CouchDB Views: Example
http://localhost:5984/products/_design/products/_view/count?group=true

{"rows":[
 {"key":["mens","t-shirt"],"value":1},
 {"key":["womens","bag"],"value":3},
 {"key":["womens","shoes"],"value":1},
 {"key":["womens","t-shirt"],"value":2}
]}

http://localhost:5984/products/_design/products/_view/count?group=true

CouchDB Views: Example
http://localhost:5984/products/_design/products/_view/count?group_level
=1

{"rows":[
 {"key":["mens"],"value":1},
 {"key":["womens"],"value":6}
]}

http://localhost:5984/products/_design/products/_view/count?group_level=1
http://localhost:5984/products/_design/products/_view/count?group_level=1

Changes API
Get a full list of newest changes since you last asked

http://localhost:5984/products/_changes?since=7

~ $ curl http://localhost:5984/products/_changes?since=7
{"results":[
{"seq":9,"id":"123",
 "changes":[{"rev":"2-7d1f78e72d38d6698a917f8834bfb5f8"}]}
],

Polling/Long polling or continuous change updates are available, and they
can be filtered.

http://localhost:5984/products/_changes?since=7

CouchDB Tips and Resources
• CouchDB Definitive Guide http://guide.couchdb.org

• New CouchDB 2.0 release

• open source, includes Cloudant features

• has sharding, scalability features
• Javascript implementation https://pouchdb.com/

• My CouchDB + PHP Tutorial on developer.ibm.com

• Get a hosted version from http://cloudant.com

http://guide.couchdb.org
https://pouchdb.com/
https://developer.ibm.com/clouddataservices/2016/07/27/get-started-with-couchdb-php-guzzle/
http://cloudant.com

Beyond MySQL

Thanks
Slides: http://lornajane.net/resources

Further reading: Seven Databases in Seven Weeks

Contact:

• lorna.mitchell@uk.ibm.com

• @lornajane

http://lornajane.net/resources

	Beyond MySQL
	PostgreSQL
	About PostgreSQL
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Myths and Surprises
	PostgreSQL Performance
	Additional Data Types: UUID
	Additional Data Types: UUID
	RETURNING Keyword
	Additional Data Types: array and hstore
	Additional Data Types: array and hstore
	Additional Data Types: array and hstore
	Common Table Expressions (CTE)
	Common Table Expressions (CTE)
	Common Table Expressions (CTE)
	Window Functions
	Window Functions
	PostgreSQL Tips and Resources
	Redis
	About Redis
	Uses of Redis
	Redis Feature Overview
	Tools
	Storing Key/Value Pairs
	Storing Hashes
	Finding Keys in Redis
	Configurable Durability
	Redis: Tips and Resources
	CouchDB
	About CouchDB
	Schemaless Database Design
	Documents and Versions
	Update Document
	Replication
	CouchDB Views
	MapReduce
	CouchDB Views: Example
	CouchDB Views: Example
	CouchDB Views: Example
	Changes API
	CouchDB Tips and Resources
	Beyond MySQL
	Thanks

