
andysal74

The Fine Art of Time Travelling:
implementing Event Sourcing

Andrea Saltarello

Software Architect @ managed/designs

https://twitter.com/andysal74

andysal@gmail.com

http://twitter.com/andysal74
mailto:andysal@gmail.com

andysal74

There’s no silver bullet

Not the way to implement Event Sourcing, but a working way
to do it nonetheless

Demo app available on Github (GPL3), BTW

https://github.com/mastreeno/Merp

andysal74

The (ambiguous) Lord of the Rings

A few fancy dressed blokes making a jaunt

andysal74

andysal74

It really became clear to me in the last couple of years that we need a
new building block and that is the Domain Event.

[Eric Evans]

An event is something that has happened in the past.

[Greg Young]

A domain event … captures the memory of something interesting which
affects the domain

[Martin Fowler]

andysal74

Instead of focusing on a system’s last known state, we might note down
every occurring event: this way, we would be able to (re)build the state
the system was in at any point in time just replaying those events

To cut a long story short: we’d end up

recording an event stream

Event Sourcing in a nutshell

JobOrderStarted InvoiceIssuedJobOrderExtended JobOrderCompleted

andysal74

What’s an event, anyway?

The (immutable) composition of:

• A (meaningful) name

• (Typed) Attributes

InvoiceIssued

DateOfIssue

Customer

Price

ProjectStarted

DateOfStart

ProjectId

ProjectCompleted

DateOfCompletion

ProjectId

ProjectRegistered

DateOfRegistration

DateOfEstimatedCompletion

ProjectId

CustomerId

Price

andysal74

demo
Event Stream

andysal74

Events vs. Relations

INSERT INTO X (M, L, G) VALUES (1, 0, 1)

UPDATE X SET M=X, L=Y … WHERE …

UPDATE X SET M=42 … WHERE …

UPDATE X SET J=K … WHERE …

INSERT JobOrderStarted VALUES ()

INSERT JobOrderExtended VALUES ()

INSERT InvoiceIssued VALUES ()

INSERT JobOrderCompleted VALUES ()

Although replaying a DBMS event log or adopting a temporal database
would allow to restore a specific system state, we would miss the
reason behind every occurred change nonetheless

andysal74

Still, my users are more interested in knowing a job order’s balance or
whether an invoice has been paid. (cit.)

That is, we need a way to produce an entity state

Event Stream vs. «My application»

andysal74

Event Sourcing <3 DDD

DDD’s Aggregates provide a convenient way to encapsulate event
management

Aggregate: A collection of objects that are bound together by a root entity,
otherwise known as an aggregate root. The aggregate root guarantees the
consistency of changes being made within the aggregate.

[Wikipedia]

An aggregate is responsible for:

• encapsulating business logic pertaining to an “entity”

• generating events to have them available for saving

• replaying events in order to rebuild a specific state

https://en.wikipedia.org/wiki/Domain-driven_design

andysal74

demo
Aggregates

andysal74

Aggregates vs. Events vs. Repos

var aggr = repository.GetById<TAggr>(id); //Triggers [time travelling capable] event replay

aggr.DoSomething(); //Domain logic + events raising

repository.Save(aggr); //Updates the event stream + events dispatching

Repository: Mediates between the domain and data mapping layers using a collection-like interface
for accessing domain objects. [DDD]

andysal74

demo
Time Travelling

andysal74

Still², my users are more interested in knowing a job order’s balance or
whether an invoice has been paid. Quickly.

Ways to achieve that:

• Snapshots can help

• CQRS to the rescue: let’s have a database storing the usual «last known system
state» using it as a read model

Event Stream vs. «My application»

andysal74

demo
Snapshots

andysal74

Enter CQRS

Acronym for Command Query Responsibility Segregation

Basically, ad hoc application stacks for both writing and reading:

• “Command” stack writes events and snapshots

• “Read” stack reads from eventually consistent, reading purposes
optimized database(s)

andysal74

CQRS: the “Read” side of the Force

As a business unit manager, I want to collect credits due to unpaid outgoing
invoices #ubiquitouslanguage #nuffsaid

CQRS/ES wise, this user story could be implemented by means of the
following real world C# code:

Database.OutgoingInvoices.
.PerBusinessUnit(businessUnitId)
.ExpiredOnly()
.Select(i => new {InvoiceNumber = i.Number, CustomerId = i.Customer.Id})
.AsParallel()
.ForAll(i => bus.Send(new CollectDebtCommand(i.InvoiceNumber, i.CustomerId)));

andysal74

demo
Read Model

andysal74

CQRS/ES in a nutshell

1. Application sends a command to the system

2. Command execution might alter the system’s state and then raise
events to state success/failure

3. Events are notified to interested subscribers (a.k.a. handlers), such
as:

• Workflow managers (a.k.a. «Sagas») which could execute more commands

• Denormalizers, which will update the read model database

Note: command/event dispatch/execution will usually be managed by a
Mediator («bus»)

andysal74

Application
Layer

Snapshots

Event store

Read stack

Domain Layer

Ad-hoc DBHandlers

Command Event Data

Handlers

Model ServicesB
U
S

CQRS/ES at a glance

andysal74

demo
Handlers/Denormalizers

andysal74

Oh, just one more thing 

andysal74

Time Travelling… «Fringe» style

What if we could manage events occurring in parallel, alternative
timelines?

andysal74

demo
Speculations

andysal74

THANK YOU!

andysal74

Encore

andysal74

A bus! A bus! My kingdom for a bus!

Although building a simple bus might be feasible (and tempting as well
), 3°-party products (e.g.: MassTransit, NServiceBus, Rebus, …)
provide much-needed features such as:

• Fault tolerance

• Scalability

• Workflow support

• Events’ scheduling

andysal74

demo
Bye, bye, polling (Polling Goodbye)

