
andysal74

The Fine Art of Time Travelling:
implementing Event Sourcing

Andrea Saltarello

Software Architect @ managed/designs

https://twitter.com/andysal74

andysal@gmail.com

http://twitter.com/andysal74
mailto:andysal@gmail.com

andysal74

There’s no silver bullet

Not the way to implement Event Sourcing, but a working way
to do it nonetheless

Demo app available on Github (GPL3), BTW

https://github.com/mastreeno/Merp

andysal74

The (ambiguous) Lord of the Rings

A few fancy dressed blokes making a jaunt

andysal74

andysal74

It really became clear to me in the last couple of years that we need a
new building block and that is the Domain Event.

[Eric Evans]

An event is something that has happened in the past.

[Greg Young]

A domain event … captures the memory of something interesting which
affects the domain

[Martin Fowler]

andysal74

Instead of focusing on a system’s last known state, we might note down
every occurring event: this way, we would be able to (re)build the state
the system was in at any point in time just replaying those events

To cut a long story short: we’d end up

recording an event stream

Event Sourcing in a nutshell

JobOrderStarted InvoiceIssuedJobOrderExtended JobOrderCompleted

andysal74

What’s an event, anyway?

The (immutable) composition of:

• A (meaningful) name

• (Typed) Attributes

InvoiceIssued

DateOfIssue

Customer

Price

ProjectStarted

DateOfStart

ProjectId

ProjectCompleted

DateOfCompletion

ProjectId

ProjectRegistered

DateOfRegistration

DateOfEstimatedCompletion

ProjectId

CustomerId

Price

andysal74

demo
Event Stream

andysal74

Events vs. Relations

INSERT INTO X (M, L, G) VALUES (1, 0, 1)

UPDATE X SET M=X, L=Y … WHERE …

UPDATE X SET M=42 … WHERE …

UPDATE X SET J=K … WHERE …

INSERT JobOrderStarted VALUES ()

INSERT JobOrderExtended VALUES ()

INSERT InvoiceIssued VALUES ()

INSERT JobOrderCompleted VALUES ()

Although replaying a DBMS event log or adopting a temporal database
would allow to restore a specific system state, we would miss the
reason behind every occurred change nonetheless

andysal74

Still, my users are more interested in knowing a job order’s balance or
whether an invoice has been paid. (cit.)

That is, we need a way to produce an entity state

Event Stream vs. «My application»

andysal74

Event Sourcing <3 DDD

DDD’s Aggregates provide a convenient way to encapsulate event
management

Aggregate: A collection of objects that are bound together by a root entity,
otherwise known as an aggregate root. The aggregate root guarantees the
consistency of changes being made within the aggregate.

[Wikipedia]

An aggregate is responsible for:

• encapsulating business logic pertaining to an “entity”

• generating events to have them available for saving

• replaying events in order to rebuild a specific state

https://en.wikipedia.org/wiki/Domain-driven_design

andysal74

demo
Aggregates

andysal74

Aggregates vs. Events vs. Repos

var aggr = repository.GetById<TAggr>(id); //Triggers [time travelling capable] event replay

aggr.DoSomething(); //Domain logic + events raising

repository.Save(aggr); //Updates the event stream + events dispatching

Repository: Mediates between the domain and data mapping layers using a collection-like interface
for accessing domain objects. [DDD]

andysal74

demo
Time Travelling

andysal74

Still², my users are more interested in knowing a job order’s balance or
whether an invoice has been paid. Quickly.

Ways to achieve that:

• Snapshots can help

• CQRS to the rescue: let’s have a database storing the usual «last known system
state» using it as a read model

Event Stream vs. «My application»

andysal74

demo
Snapshots

andysal74

Enter CQRS

Acronym for Command Query Responsibility Segregation

Basically, ad hoc application stacks for both writing and reading:

• “Command” stack writes events and snapshots

• “Read” stack reads from eventually consistent, reading purposes
optimized database(s)

andysal74

CQRS: the “Read” side of the Force

As a business unit manager, I want to collect credits due to unpaid outgoing
invoices #ubiquitouslanguage #nuffsaid

CQRS/ES wise, this user story could be implemented by means of the
following real world C# code:

Database.OutgoingInvoices.
.PerBusinessUnit(businessUnitId)
.ExpiredOnly()
.Select(i => new {InvoiceNumber = i.Number, CustomerId = i.Customer.Id})
.AsParallel()
.ForAll(i => bus.Send(new CollectDebtCommand(i.InvoiceNumber, i.CustomerId)));

andysal74

demo
Read Model

andysal74

CQRS/ES in a nutshell

1. Application sends a command to the system

2. Command execution might alter the system’s state and then raise
events to state success/failure

3. Events are notified to interested subscribers (a.k.a. handlers), such
as:

• Workflow managers (a.k.a. «Sagas») which could execute more commands

• Denormalizers, which will update the read model database

Note: command/event dispatch/execution will usually be managed by a
Mediator («bus»)

andysal74

Application
Layer

Snapshots

Event store

Read stack

Domain Layer

Ad-hoc DBHandlers

Command Event Data

Handlers

Model ServicesB
U
S

CQRS/ES at a glance

andysal74

demo
Handlers/Denormalizers

andysal74

Oh, just one more thing

andysal74

Time Travelling… «Fringe» style

What if we could manage events occurring in parallel, alternative
timelines?

andysal74

demo
Speculations

andysal74

THANK YOU!

andysal74

Encore

andysal74

A bus! A bus! My kingdom for a bus!

Although building a simple bus might be feasible (and tempting as well
), 3°-party products (e.g.: MassTransit, NServiceBus, Rebus, …)
provide much-needed features such as:

• Fault tolerance

• Scalability

• Workflow support

• Events’ scheduling

andysal74

demo
Bye, bye, polling (Polling Goodbye)

